|
A scientific control is an experiment or observation designed to minimize the effects of variables other than the single independent variable. This increases the reliability of the results, often through a comparison between control measurements and the other measurements. Scientific controls are a part of the scientific method. An example of a scientific control (sometimes called an "experimental control") might be testing plant fertilizer by giving it to only half the plants in a garden: the plants that receive no fertilizer are the control group, because they establish the baseline level of growth that the fertilizer-treated plants will be compared against. Without a control group, the experiment cannot determine whether the fertilizer-treated plants grow ''more than'' they would have if untreated. Ideally, all variables in an experiment will be controlled (accounted for by the control measurements) and none will be uncontrolled. In such an experiment, if all the controls work as expected, it is possible to conclude that the experiment is working as intended and that the results of the experiment are due to the effect of the variable being tested. That is, scientific controls allow an investigator to make a claim like "Two situations were identical until factor X occurred. Since factor X is the only difference between the two situations, the new outcome was caused by factor X." ==Controlled experiments== There are many forms of controlled experiments. A relatively simple one separates research subjects or biological specimens into two groups: an ''experimental group'' and a ''control group''. No treatment is given to the control group, while the experimental group is changed according to some key variable of interest, and the two groups are otherwise kept under the same conditions. Controls eliminate alternate explanations of experimental results, especially experimental errors and experimenter bias. Many controls are specific to the type of experiment being performed, as in the molecular markers used in SDS-PAGE experiments, and may simply have the purpose of ensuring that the equipment is working properly. The selection and use of proper controls to ensure that experimental results are valid (for example, absent of confounding variables) can be very difficult. Control measurements may also be used for other purposes: for example, a measurement of a microphone's background noise in the absence of a signal allows the noise to be subtracted from later measurements of the signal, thus producing a processed signal of higher quality. For example, if a researcher feeds an experimental artificial sweetener to sixty laboratory rats and observes that ten of them subsequently become sick, the underlying cause could be the sweetener itself or something unrelated. Other variables, which may not be readily obvious, may interfere with the experimental design. For instance, perhaps the rats were simply not supplied with enough food or water, or the water was contaminated and undrinkable, or the rats were under some psychological or physiological stress, etc. Eliminating each of these possible explanations individually would be time-consuming and difficult. However, if a control group is used that does not receive the sweetener but is otherwise treated identically, any difference between the two groups can be ascribed to the sweetener itself with much greater confidence. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「scientific control」の詳細全文を読む スポンサード リンク
|